Files
charts/bitnami/dataplatform-bp2

Data Platform Blueprint 2 packaged by Bitnami

This Helm chart can be used for the automated deployment of a data platform blueprint containing Kafka, Apache Spark and Elasticsearch. It covers optimized pod sizing and placement diversity rules.

Overview of Data Platform Blueprint 2

TL;DR

$ helm repo add bitnami https://charts.bitnami.com/bitnami
$ helm install my-release bitnami/dataplatform-bp2

Introduction

Enterprise applications increasingly rely on large amounts of data, that needs be distributed, processed, and stored. Open source and commercial supported software stacks are available to implement a data platform, that can offer common data management services, accelerating the development and deployment of data hungry business applications.

This Helm chart enables the fully automated Kubernetes deployment of such multi-stack data platform, covering the following software components:

  • Apache Kafka - Data distribution bus with buffering capabilities
  • Apache Spark - In-memory data analytics
  • Elasticsearch with Kibana - Data persistence and search
  • Logstash - Data Processing Pipeline
  • Data Platform Signature State Controller - Kubernetes controller that emits data platform health and state metrics in Prometheus format.

These containerized stateful software stacks are deployed in multi-node cluster configurations, which is defined by the Helm Chart blueprint for this data platform deployment, covering:

  • Pod placement rules - Affinity rules to ensure placement diversity to prevent single point of failures and optimize load distribution
  • Pod resource sizing rules - Optimized Pod and JVM sizing settings for optimal performance and efficient resource usage
  • Default settings to ensure Pod access security
  • Optional Tanzu Observability framework configuration.

In addition to the Pod resource optimizations, this blueprint is validated and tested to provide Kubernetes node count and sizing recommendations (see Kubernetes Cluster Requirements) to facilitate cloud platform capacity planning. The goal is optimize the number of required Kubernetes nodes in order to optimize server resource usage and, at the same time, ensuring runtime and resource diversity.

This blueprint, in its default configuration, deploys the data platform on a Kubernetes cluster with three worker nodes. Use cases for this data platform setup include: data and application evaluation, development, and functional testing.

This chart bootstraps Data Platform Blueprint-2 deployment on a Kubernetes cluster using the Helm package manager.

Once the chart is installed, the deployed data platform cluster comprises of:

  1. Zookeeper with 3 nodes to be used for both Kafka
  2. Kafka with 3 nodes using the zookeeper deployed above
  3. Elasticsearch with 3 master nodes, 2 data nodes, 2 coordinating nodes and 1 kibana node
  4. Logstash with 2 nodes
  5. Spark with 1 Master and 2 worker nodes
  6. Data Platform Metrics emitter and Prometheus exporter

The data platform can be optionally deployed with the Tanzu observability framework. In that case, the wavefront collectors will be set up as a DaemonSet to collect the Kubernetes cluster metrics to enable runtime feed into the Tanzu Observability service.

Prerequisites

  • Kubernetes 1.19+
  • Helm 3.2.0+
  • PV provisioner support in the underlying infrastructure

Kubernetes Cluster requirements

Below are the minimum Kubernetes Cluster requirements for "Small" size data platform:

Data Platform Size Kubernetes Cluster Size Usage
Small 1 Master Node (2 CPU, 4Gi Memory)
3 Worker Nodes (4 CPU, 32Gi Memory)
Data and application evaluation, development, and functional testing

Installing the Chart

To install the chart with the release name my-release:

$ helm repo add bitnami https://charts.bitnami.com/bitnami
$ helm install my-release bitnami/dataplatform-bp2

These commands deploy Data Platform on the Kubernetes cluster in the default configuration. The Parameters section lists recommended configurations of the parameters to bring up an optimal and resilient data platform. Please refer the individual charts for the remaining set of configurable parameters.

Tip

: List all releases using helm list

Recommendation: It is a recommended best practice to create a dedicated namespace for the data platform cluster and deploy the data platform helm chart in the same.

Uninstalling the Chart

To uninstall/delete the my-release deployment:

$ helm delete my-release

The command removes all the Kubernetes components associated with the chart and deletes the release.

Parameters

Global parameters

Name Description Value
global.imageRegistry Global Docker image registry ""
global.imagePullSecrets Global Docker registry secret names as an array []
global.storageClass Global StorageClass for Persistent Volume(s) ""

Common parameters

Name Description Value
commonLabels Labels to add to all deployed objects {}
commonAnnotations Annotations to add to all deployed objects {}
extraDeploy Array of extra objects to deploy with the release []

Data Platform Chart parameters

Name Description Value
dataplatform.serviceAccount.create Specifies whether a ServiceAccount should be created true
dataplatform.serviceAccount.name The name of the ServiceAccount to create ""
dataplatform.serviceAccount.automountServiceAccountToken Allows auto mount of ServiceAccountToken on the serviceAccount created true
dataplatform.rbac.create Whether to create & use RBAC resources or not true
dataplatform.exporter.enabled Start a prometheus exporter true
dataplatform.exporter.image.registry dataplatform exporter image registry docker.io
dataplatform.exporter.image.repository dataplatform exporter image repository bitnami/dataplatform-exporter
dataplatform.exporter.image.tag dataplatform exporter image tag (immutable tags are recommended) 1.0.1-scratch-r26
dataplatform.exporter.image.pullPolicy dataplatform exporter image pull policy IfNotPresent
dataplatform.exporter.image.pullSecrets Specify docker-registry secret names as an array []
dataplatform.exporter.config Data Platform Metrics Configuration emitted in Prometheus format ""
dataplatform.exporter.livenessProbe.enabled Enable livenessProbe true
dataplatform.exporter.livenessProbe.initialDelaySeconds Initial delay seconds for livenessProbe 10
dataplatform.exporter.livenessProbe.periodSeconds Period seconds for livenessProbe 5
dataplatform.exporter.livenessProbe.timeoutSeconds Timeout seconds for livenessProbe 15
dataplatform.exporter.livenessProbe.failureThreshold Failure threshold for livenessProbe 15
dataplatform.exporter.livenessProbe.successThreshold Success threshold for livenessProbe 1
dataplatform.exporter.readinessProbe.enabled Enable readinessProbe true
dataplatform.exporter.readinessProbe.initialDelaySeconds Initial delay seconds for readinessProbe 10
dataplatform.exporter.readinessProbe.periodSeconds Period seconds for readinessProbe 5
dataplatform.exporter.readinessProbe.timeoutSeconds Timeout seconds for readinessProbe 15
dataplatform.exporter.readinessProbe.failureThreshold Failure threshold for readinessProbe 15
dataplatform.exporter.readinessProbe.successThreshold Success threshold for readinessProbe 15
dataplatform.exporter.startupProbe.enabled Enable startupProbe false
dataplatform.exporter.startupProbe.initialDelaySeconds Initial delay seconds for startupProbe 10
dataplatform.exporter.startupProbe.periodSeconds Period seconds for startupProbe 5
dataplatform.exporter.startupProbe.timeoutSeconds Timeout seconds for startupProbe 15
dataplatform.exporter.startupProbe.failureThreshold Failure threshold for startupProbe 15
dataplatform.exporter.startupProbe.successThreshold Success threshold for startupProbe 15
dataplatform.exporter.containerPorts.http Data Platform Prometheus exporter port 9090
dataplatform.exporter.priorityClassName exporter priorityClassName ""
dataplatform.exporter.command Override Data Platform Exporter entrypoint string. []
dataplatform.exporter.args Arguments for the provided command if needed []
dataplatform.exporter.resources.limits The resources limits for the container {}
dataplatform.exporter.resources.requests The requested resources for the container {}
dataplatform.exporter.containerSecurityContext.enabled Enable Data Platform exporter containers' Security Context true
dataplatform.exporter.containerSecurityContext.runAsUser User ID for the containers. 1001
dataplatform.exporter.containerSecurityContext.runAsNonRoot Enable Data Platform exporter containers' Security Context runAsNonRoot true
dataplatform.exporter.podSecurityContext.enabled Enable Data Platform exporter pods' Security Context true
dataplatform.exporter.podSecurityContext.fsGroup Group ID for the pods. 1001
dataplatform.exporter.podAffinityPreset Data Platform exporter pod affinity preset. Ignored if affinity is set. Allowed values: soft or hard ""
dataplatform.exporter.podAntiAffinityPreset Data Platform exporter pod anti-affinity preset. Ignored if affinity is set. Allowed values: soft or hard soft
dataplatform.exporter.nodeAffinityPreset.type Data Platform exporter node affinity preset type. Ignored if affinity is set. Allowed values: soft or hard ""
dataplatform.exporter.nodeAffinityPreset.key Data Platform exporter node label key to match Ignored if affinity is set. ""
dataplatform.exporter.nodeAffinityPreset.values Data Platform exporter node label values to match. Ignored if affinity is set. []
dataplatform.exporter.affinity Affinity settings for exporter pod assignment. Evaluated as a template {}
dataplatform.exporter.nodeSelector Node labels for exporter pods assignment. Evaluated as a template {}
dataplatform.exporter.tolerations Tolerations for exporter pods assignment. Evaluated as a template []
dataplatform.exporter.podLabels Additional labels for Metrics exporter pod {}
dataplatform.exporter.podAnnotations Additional annotations for Metrics exporter pod {}
dataplatform.exporter.customLivenessProbe Override default liveness probe {}
dataplatform.exporter.customReadinessProbe Override default readiness probe {}
dataplatform.exporter.customStartupProbe Override default startup probe {}
dataplatform.exporter.updateStrategy.type Update strategy - only really applicable for deployments with RWO PVs attached RollingUpdate
dataplatform.exporter.updateStrategy.rollingUpdate Deployment rolling update configuration parameters {}
dataplatform.exporter.extraEnvVars Additional environment variables to set []
dataplatform.exporter.extraEnvVarsCM ConfigMap with extra environment variables ""
dataplatform.exporter.extraEnvVarsSecret Secret with extra environment variables ""
dataplatform.exporter.extraVolumes Extra volumes to add to the deployment []
dataplatform.exporter.extraVolumeMounts Extra volume mounts to add to the container []
dataplatform.exporter.initContainers Add init containers to the %%MAIN_CONTAINER_NAME%% pods []
dataplatform.exporter.sidecars Add sidecars to the %%MAIN_CONTAINER_NAME%% pods []
dataplatform.exporter.service.type Service type for default Data Platform Prometheus exporter service ClusterIP
dataplatform.exporter.service.annotations Exporter service annotations {}
dataplatform.exporter.service.labels Additional labels for Data Platform exporter service {}
dataplatform.exporter.service.ports.http Kubernetes Service port 9090
dataplatform.exporter.service.loadBalancerIP Load balancer IP for the Data Platform Exporter Service (optional, cloud specific) ""
dataplatform.exporter.service.nodePorts.http Node ports for the HTTP exporter service ""
dataplatform.exporter.service.loadBalancerSourceRanges Exporter Load Balancer Source ranges []
dataplatform.exporter.hostAliases Deployment pod host aliases []
dataplatform.emitter.enabled Start Data Platform metrics emitter true
dataplatform.emitter.image.registry Data Platform emitter image registry docker.io
dataplatform.emitter.image.repository Data Platform emitter image repository bitnami/dataplatform-emitter
dataplatform.emitter.image.tag Data Platform emitter image tag (immutable tags are recommended) 1.0.1-scratch-r31
dataplatform.emitter.image.pullPolicy Data Platform emitter image pull policy IfNotPresent
dataplatform.emitter.image.pullSecrets Specify docker-registry secret names as an array []
dataplatform.emitter.livenessProbe.enabled Enable livenessProbe true
dataplatform.emitter.livenessProbe.initialDelaySeconds Initial delay seconds for livenessProbe 10
dataplatform.emitter.livenessProbe.periodSeconds Period seconds for livenessProbe 5
dataplatform.emitter.livenessProbe.timeoutSeconds Timeout seconds for livenessProbe 15
dataplatform.emitter.livenessProbe.failureThreshold Failure threshold for livenessProbe 15
dataplatform.emitter.livenessProbe.successThreshold Success threshold for livenessProbe 1
dataplatform.emitter.readinessProbe.enabled Enable readinessProbe true
dataplatform.emitter.readinessProbe.initialDelaySeconds Initial delay seconds for readinessProbe 10
dataplatform.emitter.readinessProbe.periodSeconds Period seconds for readinessProbe 5
dataplatform.emitter.readinessProbe.timeoutSeconds Timeout seconds for readinessProbe 15
dataplatform.emitter.readinessProbe.failureThreshold Failure threshold for readinessProbe 15
dataplatform.emitter.readinessProbe.successThreshold Success threshold for readinessProbe 15
dataplatform.emitter.startupProbe.enabled Enable startupProbe false
dataplatform.emitter.startupProbe.initialDelaySeconds Initial delay seconds for startupProbe 10
dataplatform.emitter.startupProbe.periodSeconds Period seconds for startupProbe 5
dataplatform.emitter.startupProbe.timeoutSeconds Timeout seconds for startupProbe 15
dataplatform.emitter.startupProbe.failureThreshold Failure threshold for startupProbe 15
dataplatform.emitter.startupProbe.successThreshold Success threshold for startupProbe 15
dataplatform.emitter.containerPorts.http Data Platform emitter port 8091
dataplatform.emitter.priorityClassName exporter priorityClassName ""
dataplatform.emitter.command Override Data Platform entrypoint string. []
dataplatform.emitter.args Arguments for the provided command if needed []
dataplatform.emitter.resources.limits The resources limits for the container {}
dataplatform.emitter.resources.requests The requested resources for the container {}
dataplatform.emitter.containerSecurityContext.enabled Enable Data Platform emitter containers' Security Context true
dataplatform.emitter.containerSecurityContext.runAsUser User ID for the containers. 1001
dataplatform.emitter.containerSecurityContext.runAsNonRoot Enable Data Platform emitter containers' Security Context runAsNonRoot true
dataplatform.emitter.podSecurityContext.enabled Enable Data Platform emitter pods' Security Context true
dataplatform.emitter.podSecurityContext.fsGroup Group ID for the pods. 1001
dataplatform.emitter.podAffinityPreset Data Platform emitter pod affinity preset. Ignored if affinity is set. Allowed values: soft or hard ""
dataplatform.emitter.podAntiAffinityPreset Data Platform emitter pod anti-affinity preset. Ignored if affinity is set. Allowed values: soft or hard soft
dataplatform.emitter.nodeAffinityPreset.type Data Platform emitter node affinity preset type. Ignored if affinity is set. Allowed values: soft or hard ""
dataplatform.emitter.nodeAffinityPreset.key Data Platform emitter node label key to match Ignored if affinity is set. ""
dataplatform.emitter.nodeAffinityPreset.values Data Platform emitter node label values to match. Ignored if affinity is set. []
dataplatform.emitter.affinity Affinity settings for emitter pod assignment. Evaluated as a template {}
dataplatform.emitter.nodeSelector Node labels for emitter pods assignment. Evaluated as a template {}
dataplatform.emitter.tolerations Tolerations for emitter pods assignment. Evaluated as a template []
dataplatform.emitter.podLabels Additional labels for Metrics emitter pod {}
dataplatform.emitter.podAnnotations Additional annotations for Metrics emitter pod {}
dataplatform.emitter.customLivenessProbe Override default liveness probe%%MAIN_CONTAINER_NAME%% {}
dataplatform.emitter.customReadinessProbe Override default readiness probe%%MAIN_CONTAINER_NAME%% {}
dataplatform.emitter.customStartupProbe Override default startup probe {}
dataplatform.emitter.updateStrategy.type Update strategy - only really applicable for deployments with RWO PVs attached RollingUpdate
dataplatform.emitter.updateStrategy.rollingUpdate Deployment rolling update configuration parameters {}
dataplatform.emitter.extraEnvVars Additional environment variables to set []
dataplatform.emitter.extraEnvVarsCM ConfigMap with extra environment variables ""
dataplatform.emitter.extraEnvVarsSecret Secret with extra environment variables ""
dataplatform.emitter.extraVolumes Extra volumes to add to the deployment []
dataplatform.emitter.extraVolumeMounts Extra volume mounts to add to the container []
dataplatform.emitter.initContainers Add init containers to the %%MAIN_CONTAINER_NAME%% pods []
dataplatform.emitter.sidecars Add sidecars to the %%MAIN_CONTAINER_NAME%% pods []
dataplatform.emitter.service.type Service type for default Data Platform metrics emitter service ClusterIP
dataplatform.emitter.service.annotations annotations for Data Platform emitter service {}
dataplatform.emitter.service.labels Additional labels for Data Platform emitter service {}
dataplatform.emitter.service.ports.http Kubernetes Service port 8091
dataplatform.emitter.service.loadBalancerIP Load balancer IP for the dataplatform emitter Service (optional, cloud specific) ""
dataplatform.emitter.service.nodePorts.http Node ports for the HTTP emitter service ""
dataplatform.emitter.service.loadBalancerSourceRanges Data Platform Emitter Load Balancer Source ranges []
dataplatform.emitter.hostAliases Deployment pod host aliases []

Kafka parameters

Name Description Value
kafka.enabled Enable Kafka subchart true
kafka.replicaCount Number of Kafka brokers 3
kafka.heapOpts Kafka Java Heap size -Xmx4096m -Xms4096m
kafka.resources.limits Resource limits for Kafka {}
kafka.resources.requests.cpu CPU capacity request for Kafka nodes 250m
kafka.resources.requests.memory Memory capacity request for Kafka nodes 5120Mi
kafka.affinity.podAntiAffinity Kafka anti affinity rules {}
kafka.affinity.podAffinity Kafka affinity rules {}
kafka.metrics.kafka.enabled Enable prometheus exporter for Kafka false
kafka.metrics.kafka.resources.limits Resource limits for kafka prometheus exporter {}
kafka.metrics.kafka.resources.requests.cpu CPU capacity request for Kafka prometheus nodes 100m
kafka.metrics.kafka.resources.requests.memory Memory capacity request for Kafka prometheus nodes 128Mi
kafka.metrics.kafka.service.port Kafka Exporter Prometheus port to be used in wavefront configuration 9308
kafka.metrics.jmx.enabled Enable JMX exporter for Kafka false
kafka.metrics.jmx.resources.limits Resource limits for kafka prometheus exporter {}
kafka.metrics.jmx.resources.requests.cpu CPU capacity request for Kafka prometheus nodes 100m
kafka.metrics.jmx.resources.requests.memory Memory capacity request for Kafka prometheus nodes 128Mi
kafka.metrics.jmx.service.port JMX Prometheus exporter service port 5556
kafka.metrics.jmx.service.annotations Exporter service annotations {}
kafka.zookeeper.enabled Enable the Kafka subchart's Zookeeper true
kafka.zookeeper.replicaCount Number of Zookeeper nodes 3
kafka.zookeeper.heapSize Size in MB for the Java Heap options (Xmx and XMs) in Zookeeper. This env var is ignored if Xmx an Xms are configured via JVMFLAGS 4096
kafka.zookeeper.resources.limits Resource limits for zookeeper {}
kafka.zookeeper.resources.requests.cpu CPU capacity request for zookeeper 250m
kafka.zookeeper.resources.requests.memory Memory capacity request for zookeeper 5Gi
kafka.zookeeper.affinity.podAntiAffinity Zookeeper pod anti affinity rules {}
kafka.externalZookeeper.servers Array of external Zookeeper servers []

Spark parameters

Name Description Value
spark.enabled Enable Spark subchart true
spark.master.containerPorts.web Web port for spark master 8080
spark.master.resources.limits Spark master resource limits {}
spark.master.resources.requests.cpu Spark master CPUs 250m
spark.master.resources.requests.memory Spark master requested memory 5Gi
spark.master.affinity.podAntiAffinity Anti affinity rules set for resiliency {}
spark.worker.replicaCount Number of spark workers 2
spark.worker.containerPorts.web Web port for spark master 8081
spark.worker.resources.limits Spark master resource limits {}
spark.worker.resources.requests.cpu Spark master CPUs 250m
spark.worker.resources.requests.memory Spark master requested memory 5Gi
spark.worker.affinity.podAntiAffinity Anti affinity rules set for resiliency {}
spark.metrics.enabled Enable Prometheus exporter for Spark false
spark.metrics.masterAnnotations Annotations for Spark master exporter {}
spark.metrics.workerAnnotations Annotations for Spark worker exporter {}

Elasticsearch parameters

Name Description Value
elasticsearch.enabled Enable Elasticsearch true
elasticsearch.global.kibanaEnabled Enable Kibana true
elasticsearch.master.replicaCount Number of Elasticsearch replicas 3
elasticsearch.master.heapSize Heap Size for Elasticsearch master 768m
elasticsearch.master.affinity.podAntiAffinity Elasticsearch pod anti affinity {}
elasticsearch.master.resources.limits Elasticsearch master resource limits {}
elasticsearch.master.resources.requests.cpu Elasticsearch master CPUs 250m
elasticsearch.master.resources.requests.memory Elasticsearch master requested memory 1Gi
elasticsearch.master.affinity.podAntiAffinity Anti affinity rules set for resiliency {}
elasticsearch.data.name Elasticsearch data node name data
elasticsearch.data.replicaCount Number of Elasticsearch replicas 2
elasticsearch.data.heapSize Heap Size for Elasticsearch data node 4096m
elasticsearch.data.affinity.podAntiAffinity Anti affinity rules set for resiliency {}
elasticsearch.data.resources.limits Elasticsearch data node resource limits {}
elasticsearch.data.resources.requests.cpu Elasticsearch data node CPUs 250m
elasticsearch.data.resources.requests.memory Elasticsearch data node requested memory 5Gi
elasticsearch.coordinating.replicaCount Number of Elasticsearch replicas 2
elasticsearch.coordinating.heapSize Heap Size for Elasticsearch coordinating 768m
elasticsearch.coordinating.affinity.podAntiAffinity Anti affinity rules set for resiliency {}
elasticsearch.coordinating.resources.limits Elasticsearch coordinating resource limits {}
elasticsearch.coordinating.resources.requests.cpu Elasticsearch coordinating CPUs 250m
elasticsearch.coordinating.resources.requests.memory Elasticsearch coordinating requested memory 1Gi
elasticsearch.metrics.enabled Enable Prometheus exporter for Elasticsearch false
elasticsearch.metrics.resources.limits Elasticsearch metrics resource limits {}
elasticsearch.metrics.resources.requests.cpu Elasticsearch metrics CPUs 100m
elasticsearch.metrics.resources.requests.memory Elasticsearch metrics requested memory 128Mi
elasticsearch.metrics.service.annotations Elasticsearch metrics service annotations {}

Logstash parameters

Name Description Value
logstash.enabled Enable Logstash true
logstash.replicaCount Number of Logstash replicas 2
logstash.affinity.podAntiAffinity Logstash pod anti affinity {}
logstash.extraEnvVars Array containing extra env vars to configure Logstash []
logstash.resources.limits Elasticsearch metrics resource limits {}
logstash.resources.requests.cpu Elasticsearch metrics CPUs 250m
logstash.resources.requests.memory Elasticsearch metrics requested memory 1500Mi
logstash.metrics.enabled Enable metrics for logstash false
logstash.metrics.resources.limits Elasticsearch metrics resource limits {}
logstash.metrics.resources.requests.cpu Elasticsearch metrics CPUs 100m
logstash.metrics.resources.requests.memory Elasticsearch metrics requested memory 128Mi
logstash.metrics.service.port Logstash Prometheus port 9198

Tanzu Observability (Wavefront) parameters

Name Description Value
wavefront.enabled Enable Tanzu Observability Framework false
wavefront.clusterName Cluster name KUBERNETES_CLUSTER_NAME
wavefront.wavefront.url Tanzu Observability cluster URL https://YOUR_CLUSTER.wavefront.com
wavefront.wavefront.token Tanzu Observability access token YOUR_API_TOKEN
wavefront.wavefront.existingSecret Tanzu Observability existing secret ""
wavefront.collector.resources.limits Wavefront collector metrics resource limits {}
wavefront.collector.resources.requests.cpu Wavefront collector metrics CPUs 200m
wavefront.collector.resources.requests.memory Wavefront collector metrics requested memory 10Mi
wavefront.collector.discovery.enabled Enable wavefront discovery true
wavefront.collector.discovery.enableRuntimeConfigs Enable runtime configs for wavefront discovery true
wavefront.collector.discovery.config Wavefront discovery config []
wavefront.collector.discovery.enabled Rules based and Prometheus endpoints auto-discovery true
wavefront.collector.discovery.enableRuntimeConfigs Enable runtime discovery rules true
wavefront.collector.discovery.config Configuration for rules based auto-discovery []
wavefront.proxy.resources.limits Wavefront Proxy metrics resource limits {}
wavefront.proxy.resources.requests.cpu Wavefront Proxy metrics CPUs 100m
wavefront.proxy.resources.requests.memory Wavefront Proxy metrics requested memory 5Gi

Specify each parameter using the --set key=value[,key=value] argument to helm install. For example,

$ helm install my-release \
  --set kafka.replicaCount=3 \
  bitnami/dataplatform-bp2

The above command deploys the data platform with Kafka with 3 nodes (replicas).

Alternatively, a YAML file that specifies the values for the above parameters can be provided while installing the chart. For example

$ helm install my-release -f values.yaml bitnami/dataplatform-bp2

Tip

: You can use the default values.yaml

Data Platform Deployment with Observability Framework

In the default deployment, the helm chart deploys the data platform with Metrics Emitter and Prometheus Exporter which emit the health metrics of the data platform which can be integrated with your observability solution.

  • To deploy the data platform with Tanzu Observability Framework with the Wavefront Collector with enabled annotation based discovery feature for all the applications (Kafka/Spark/Elasticsearch/Logstash) in the data platform, make sure that auto discovery wavefront.collector.discovery.enabled=true is enabled, It should be enabled by default and specify the 'enabled' parameter using the --set <component>.metrics.enabled=true argument to helm install. For Example,
$ helm install my-release bitnami/dataplatform-bp2 \
    --set kafka.metrics.kafka.enabled=true \
    --set kafka.metrics.jmx.enabled=true \
    --set spark.metrics.enabled=true \
    --set elasticsearch.metrics.enabled=true \
    --set logstash.metrics.enabled=true \
    --set wavefront.enabled=true \
    --set wavefront.clusterName=<K8s-CLUSTER-NAME> \
    --set wavefront.wavefront.url=https://<YOUR_CLUSTER>.wavefront.com \
    --set wavefront.wavefront.token=<YOUR_API_TOKEN>

Note

: When Annotation based discovery feature is enabled in the Wavefront Collector, it scrapes metrics from all the pods in the cluster that have Prometheus annotation enabled.

  • To deploy the data platform with Tanzu Observability Framework without the annotation based discovery feature in Wavefront Collector for all the applications (Kafka/Spark/Elasticsearch/Logstash) in the data platform, uncomment the config section in the wavefront deployment from the data platform values.yml file, and specify the 'enable' parameter to 'false' using the --set wavefront.collector.discovery.enabled=false with helm install command, below is an example:
$ helm install my-release bitnami/dataplatform-bp2 \
    --set kafka.metrics.kafka.enabled=true \
    --set kafka.metrics.jmx.enabled=true \
    --set spark.metrics.enabled=true \
    --set elasticsearch.metrics.enabled=true \
    --set logstash.metrics.enabled=true \
    --set wavefront.enabled=true \
    --set wavefront.collector.discovery.enabled=false \
    --set wavefront.clusterName=<K8s-CLUSTER-NAME> \
    --set wavefront.wavefront.url=https://<YOUR_CLUSTER>.wavefront.com \
    --set wavefront.wavefront.token=<YOUR_API_TOKEN>

For using an existing Wavefront deployment

  • To enable the auto discovery feature in wavefront for the existing wavefront deployment, make sure that auto discovery enableDiscovery: true and annotation based discovery discovery.disable_annotation_discovery: false are enabled in the Wavefront Collector ConfigMap. They should be enabled by default.

  • To not use the annotation based discovery feature in wavefront, edit the Wavefront Collector ConfigMap and add the following snippet under discovery plugins. Once done, restart the wavefront collectors DaemonSet.

$ kubectl edit configmap wavefront-collector-config -n wavefront

Add the below config:

      discovery:
        enable_runtime_plugins: true
        plugins:
        ## auto-discover kafka-exporter
        - name: kafka-discovery
          type: prometheus
          selectors:
            images:
              - '*bitnami/kafka-exporter*'
          port: 9308
          path: /metrics
          scheme: http

        ## auto-discover jmx exporter
        - name: kafka-jmx-discovery
          type: prometheus
          selectors:
            images:
              - '*bitnami/jmx-exporter*'
          port: 5556
          path: /metrics
          scheme: http
          prefix: kafkajmx.

        ## auto-discover elasticsearch
        - name: elasticsearch-discovery
          type: prometheus
          selectors:
            images:
              - '*bitnami/elasticsearch-exporter*'
          port: 9114
          path: /metrics
          scheme: http

        ## auto-discover logstash
        - name: logstash-discovery
          type: prometheus
          selectors:
            images:
              - '*bitnami/logstash-exporter*'
          port: 9198
          path: /metrics
          scheme: http

        ## auto-discover spark
        - name: spark-worker-discovery
          type: prometheus
          selectors:
            images:
              - '*bitnami/spark*'
          port: 8081
          path: /metrics/
          scheme: http
          prefix: spark.

        ## auto-discover spark
        - name: spark-master-discovery
          type: prometheus
          selectors:
            images:
              - '*bitnami/spark*'
          port: 8080
          path: /metrics/
          scheme: http
          prefix: spark.

Below is the command to restart the DaemonSets

$ kubectl rollout restart daemonsets wavefront-collector -n wavefront

Configuration and installation details

Rolling VS Immutable tags

It is strongly recommended to use immutable tags in a production environment. This ensures your deployment does not change automatically if the same tag is updated with a different image.

Bitnami will release a new chart updating its containers if a new version of the main container, significant changes, or critical vulnerabilities exist.

Troubleshooting

Find more information about how to deal with common errors related to Bitnami's Helm charts in this troubleshooting guide.

In order to render complete information about the deployment including all the sub-charts, please use --render-subchart-notes flag while installing the chart.

Notable changes

0.3.0

Elasticsearch dependency version was bumped to a new major version changing the license of some of its components to the Elastic License that is not currently accepted as an Open Source license by the Open Source Initiative (OSI). Check Elasticsearch Upgrading Notes for more information.

Regular upgrade is compatible from previous versions.

Upgrading

To 13.0.0

This major updates the three of the subcharts to their newest major:

To 12.0.0

This major updates the Kafka subchart to it newest major, 16.0.0. Here you can find more information about the changes introduced in that version.

To 10.0.0

This major release updates the Kafka subchart to its newest major 15.x.x, which contain several changes in the supported values and bumps Kafka major version to 3.x series (check the upgrade notes to obtain more information).

To upgrade to 10.0.0 from 9.x it's recommended to maintain the Kafka 2.x series (to avoid incompatibility issues). To do so, follow the instructions below (the following example assumes that the release name is dataplatform and the release namespace default):

export CURRENT_KAFKA_VERSION=$(kubectl exec dataplatform-kafka-0 -- bash -c 'echo $BITNAMI_IMAGE_VERSION')
helm upgrade dataplatform bitnami/dataplatform-bp2 \
  --set kafka.image.tag=$CURRENT_KAFKA_VERSION

To 9.0.0

This major adds annotation based discovery feature in wavefront and updates to newest versions of the exporter/emitter to the chart.

To 8.0.0

This major adds the data platform metrics emitter and Prometheus exporters to the chart which emit health metrics of the data platform.

To 7.0.0

This major updates the Elasticsearch subchart to its newest major, 17.0.0, which adds support for X-pack security features such as SSL/TLS encryption and password protection. Check Elasticsearch Upgrading Notes for more information.

To 6.0.0

This major version updates resources for elasticsearch and logstash values. Also updates the README file with instructions on how to enable existing Wavefront deployment for the data platform blueprint.

To 5.0.0

This major updates the Kafka subchart its newest major, 14.0.0. Here you can find more information about the changes introduced in this version.

To 4.0.0

This major updates the Kafka subchart to its newest major 13.0.0. For more information on this subchart's major, please refer to kafka upgrade notes.

To 3.0.0

This major version updates the prefixes of individual applications metrics in Wavefront Collectors which are fed to Tanzu observability in order to light up the individual dashboards of Kafka, Spark ElasticSearch and Logstash on Tanzu Observability platform.

To 2.0.0

This major updates the wavefront subchart to it newest major, 3.0.0, which contains a new major for kube-state-metrics. For more information on this subchart's major, please refer to wavefront upgrade notes.

To 1.0.0

The affinity rules have been updated to allow deploying this chart and the dataplatform-bp1 chart in the same cluster.

License

Copyright © 2022 Bitnami

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.