# -*- text -*- ## ## radiusd.conf -- FreeRADIUS server configuration file - 3.0.17 ## ## http://www.freeradius.org/ ## $Id: 59e59f3ac443e75663333a5b7732664b67c5567d $ ## ###################################################################### # # Read "man radiusd" before editing this file. See the section # titled DEBUGGING. It outlines a method where you can quickly # obtain the configuration you want, without running into # trouble. # # Run the server in debugging mode, and READ the output. # # $ radiusd -X # # We cannot emphasize this point strongly enough. The vast # majority of problems can be solved by carefully reading the # debugging output, which includes warnings about common issues, # and suggestions for how they may be fixed. # # There may be a lot of output, but look carefully for words like: # "warning", "error", "reject", or "failure". The messages there # will usually be enough to guide you to a solution. # # If you are going to ask a question on the mailing list, then # explain what you are trying to do, and include the output from # debugging mode (radiusd -X). Failure to do so means that all # of the responses to your question will be people telling you # to "post the output of radiusd -X". ###################################################################### # # The location of other config files and logfiles are declared # in this file. # # Also general configuration for modules can be done in this # file, it is exported through the API to modules that ask for # it. # # See "man radiusd.conf" for documentation on the format of this # file. Note that the individual configuration items are NOT # documented in that "man" page. They are only documented here, # in the comments. # # The "unlang" policy language can be used to create complex # if / else policies. See "man unlang" for details. # prefix = /usr exec_prefix = /usr sysconfdir = /etc localstatedir = /var sbindir = ${exec_prefix}/sbin logdir = /var/log/freeradius #raddbdir = /etc/freeradius/3.0 radacctdir = ${logdir}/radacct # # name of the running server. See also the "-n" command-line option. name = freeradius # Location of config and logfiles. #confdir = ${raddbdir} modconfdir = ${confdir}/mods-config certdir = ${confdir}/certs cadir = ${confdir}/certs run_dir = ${localstatedir}/run/${name} # Should likely be ${localstatedir}/lib/radiusd #db_dir = ${raddbdir} # # libdir: Where to find the rlm_* modules. # # This should be automatically set at configuration time. # # If the server builds and installs, but fails at execution time # with an 'undefined symbol' error, then you can use the libdir # directive to work around the problem. # # The cause is usually that a library has been installed on your # system in a place where the dynamic linker CANNOT find it. When # executing as root (or another user), your personal environment MAY # be set up to allow the dynamic linker to find the library. When # executing as a daemon, FreeRADIUS MAY NOT have the same # personalized configuration. # # To work around the problem, find out which library contains that symbol, # and add the directory containing that library to the end of 'libdir', # with a colon separating the directory names. NO spaces are allowed. # # e.g. libdir = /usr/local/lib:/opt/package/lib # # You can also try setting the LD_LIBRARY_PATH environment variable # in a script which starts the server. # # If that does not work, then you can re-configure and re-build the # server to NOT use shared libraries, via: # # ./configure --disable-shared # make # make install # libdir = @RADIUS_LIBDIR@/freeradius # pidfile: Where to place the PID of the RADIUS server. # # The server may be signalled while it's running by using this # file. # # This file is written when ONLY running in daemon mode. # # e.g.: kill -HUP `cat /var/run/radiusd/radiusd.pid` # pidfile = ${run_dir}/${name}.pid # # correct_escapes: use correct backslash escaping # # Prior to version 3.0.5, the handling of backslashes was a little # awkward, i.e. "wrong". In some cases, to get one backslash into # a regex, you had to put 4 in the config files. # # Version 3.0.5 fixes that. However, for backwards compatibility, # the new method of escaping is DISABLED BY DEFAULT. This means # that upgrading to 3.0.5 won't break your configuration. # # If you don't have double backslashes (i.e. \\) in your configuration, # this won't matter to you. If you do have them, fix that to use only # one backslash, and then set "correct_escapes = true". # # You can check for this by doing: # # $ grep '\\\\' $(find raddb -type f -print) # correct_escapes = true # panic_action: Command to execute if the server dies unexpectedly. # # FOR PRODUCTION SYSTEMS, ACTIONS SHOULD ALWAYS EXIT. # AN INTERACTIVE ACTION MEANS THE SERVER IS NOT RESPONDING TO REQUESTS. # AN INTERACTICE ACTION MEANS THE SERVER WILL NOT RESTART. # # THE SERVER MUST NOT BE ALLOWED EXECUTE UNTRUSTED PANIC ACTION CODE # PATTACH CAN BE USED AS AN ATTACK VECTOR. # # The panic action is a command which will be executed if the server # receives a fatal, non user generated signal, i.e. SIGSEGV, SIGBUS, # SIGABRT or SIGFPE. # # This can be used to start an interactive debugging session so # that information regarding the current state of the server can # be acquired. # # The following string substitutions are available: # - %e The currently executing program e.g. /sbin/radiusd # - %p The PID of the currently executing program e.g. 12345 # # Standard ${} substitutions are also allowed. # # An example panic action for opening an interactive session in GDB would be: # #panic_action = "gdb %e %p" # # Again, don't use that on a production system. # # An example panic action for opening an automated session in GDB would be: # #panic_action = "gdb -silent -x ${raddbdir}/panic.gdb %e %p 2>&1 | tee ${logdir}/gdb-${name}-%p.log" # # That command can be used on a production system. # # max_request_time: The maximum time (in seconds) to handle a request. # # Requests which take more time than this to process may be killed, and # a REJECT message is returned. # # WARNING: If you notice that requests take a long time to be handled, # then this MAY INDICATE a bug in the server, in one of the modules # used to handle a request, OR in your local configuration. # # This problem is most often seen when using an SQL database. If it takes # more than a second or two to receive an answer from the SQL database, # then it probably means that you haven't indexed the database. See your # SQL server documentation for more information. # # Useful range of values: 5 to 120 # max_request_time = 30 # cleanup_delay: The time to wait (in seconds) before cleaning up # a reply which was sent to the NAS. # # The RADIUS request is normally cached internally for a short period # of time, after the reply is sent to the NAS. The reply packet may be # lost in the network, and the NAS will not see it. The NAS will then # re-send the request, and the server will respond quickly with the # cached reply. # # If this value is set too low, then duplicate requests from the NAS # MAY NOT be detected, and will instead be handled as separate requests. # # If this value is set too high, then the server will cache too many # requests, and some new requests may get blocked. (See 'max_requests'.) # # Useful range of values: 2 to 10 # cleanup_delay = 5 # max_requests: The maximum number of requests which the server keeps # track of. This should be 256 multiplied by the number of clients. # e.g. With 4 clients, this number should be 1024. # # If this number is too low, then when the server becomes busy, # it will not respond to any new requests, until the 'cleanup_delay' # time has passed, and it has removed the old requests. # # If this number is set too high, then the server will use a bit more # memory for no real benefit. # # If you aren't sure what it should be set to, it's better to set it # too high than too low. Setting it to 1000 per client is probably # the highest it should be. # # Useful range of values: 256 to infinity # max_requests = 16384 # hostname_lookups: Log the names of clients or just their IP addresses # e.g., www.freeradius.org (on) or 206.47.27.232 (off). # # The default is 'off' because it would be overall better for the net # if people had to knowingly turn this feature on, since enabling it # means that each client request will result in AT LEAST one lookup # request to the nameserver. Enabling hostname_lookups will also # mean that your server may stop randomly for 30 seconds from time # to time, if the DNS requests take too long. # # Turning hostname lookups off also means that the server won't block # for 30 seconds, if it sees an IP address which has no name associated # with it. # # allowed values: {no, yes} # hostname_lookups = no # # Logging section. The various "log_*" configuration items # will eventually be moved here. # log { # # Destination for log messages. This can be one of: # # files - log to "file", as defined below. # syslog - to syslog (see also the "syslog_facility", below. # stdout - standard output # stderr - standard error. # # The command-line option "-X" over-rides this option, and forces # logging to go to stdout. # destination = files # # Highlight important messages sent to stderr and stdout. # # Option will be ignored (disabled) if output if TERM is not # an xterm or output is not to a TTY. # colourise = yes # # The logging messages for the server are appended to the # tail of this file if destination == "files" # # If the server is running in debugging mode, this file is # NOT used. # file = ${logdir}/radius.log # # Which syslog facility to use, if ${destination} == "syslog" # # The exact values permitted here are OS-dependent. You probably # don't want to change this. # syslog_facility = daemon # Log the full User-Name attribute, as it was found in the request. # # allowed values: {no, yes} # stripped_names = no # Log authentication requests to the log file. # # allowed values: {no, yes} # auth = no # Log passwords with the authentication requests. # auth_badpass - logs password if it's rejected # auth_goodpass - logs password if it's correct # # allowed values: {no, yes} # auth_badpass = no auth_goodpass = no # Log additional text at the end of the "Login OK" messages. # for these to work, the "auth" and "auth_goodpass" or "auth_badpass" # configurations above have to be set to "yes". # # The strings below are dynamically expanded, which means that # you can put anything you want in them. However, note that # this expansion can be slow, and can negatively impact server # performance. # # msg_goodpass = "" # msg_badpass = "" # The message when the user exceeds the Simultaneous-Use limit. # msg_denied = "You are already logged in - access denied" } # The program to execute to do concurrency checks. checkrad = ${sbindir}/checkrad # SECURITY CONFIGURATION # # There may be multiple methods of attacking on the server. This # section holds the configuration items which minimize the impact # of those attacks # security { # chroot: directory where the server does "chroot". # # The chroot is done very early in the process of starting # the server. After the chroot has been performed it # switches to the "user" listed below (which MUST be # specified). If "group" is specified, it switches to that # group, too. Any other groups listed for the specified # "user" in "/etc/group" are also added as part of this # process. # # The current working directory (chdir / cd) is left # *outside* of the chroot until all of the modules have been # initialized. This allows the "raddb" directory to be left # outside of the chroot. Once the modules have been # initialized, it does a "chdir" to ${logdir}. This means # that it should be impossible to break out of the chroot. # # If you are worried about security issues related to this # use of chdir, then simply ensure that the "raddb" directory # is inside of the chroot, end be sure to do "cd raddb" # BEFORE starting the server. # # If the server is statically linked, then the only files # that have to exist in the chroot are ${run_dir} and # ${logdir}. If you do the "cd raddb" as discussed above, # then the "raddb" directory has to be inside of the chroot # directory, too. # # chroot = /path/to/chroot/directory # user/group: The name (or #number) of the user/group to run radiusd as. # # If these are commented out, the server will run as the # user/group that started it. In order to change to a # different user/group, you MUST be root ( or have root # privileges ) to start the server. # # We STRONGLY recommend that you run the server with as few # permissions as possible. That is, if you're not using # shadow passwords, the user and group items below should be # set to radius'. # # NOTE that some kernels refuse to setgid(group) when the # value of (unsigned)group is above 60000; don't use group # "nobody" on these systems! # # On systems with shadow passwords, you might have to set # 'group = shadow' for the server to be able to read the # shadow password file. If you can authenticate users while # in debug mode, but not in daemon mode, it may be that the # debugging mode server is running as a user that can read # the shadow info, and the user listed below can not. # # The server will also try to use "initgroups" to read # /etc/groups. It will join all groups where "user" is a # member. This can allow for some finer-grained access # controls. # user = root group = root # Core dumps are a bad thing. This should only be set to # 'yes' if you're debugging a problem with the server. # # allowed values: {no, yes} # allow_core_dumps = no # # max_attributes: The maximum number of attributes # permitted in a RADIUS packet. Packets which have MORE # than this number of attributes in them will be dropped. # # If this number is set too low, then no RADIUS packets # will be accepted. # # If this number is set too high, then an attacker may be # able to send a small number of packets which will cause # the server to use all available memory on the machine. # # Setting this number to 0 means "allow any number of attributes" max_attributes = 200 # # reject_delay: When sending an Access-Reject, it can be # delayed for a few seconds. This may help slow down a DoS # attack. It also helps to slow down people trying to brute-force # crack a users password. # # Setting this number to 0 means "send rejects immediately" # # If this number is set higher than 'cleanup_delay', then the # rejects will be sent at 'cleanup_delay' time, when the request # is deleted from the internal cache of requests. # # As of Version 3.0.5, "reject_delay" has sub-second resolution. # e.g. "reject_delay = 1.4" seconds is possible. # # Useful ranges: 1 to 5 reject_delay = 1 # # status_server: Whether or not the server will respond # to Status-Server requests. # # When sent a Status-Server message, the server responds with # an Access-Accept or Accounting-Response packet. # # This is mainly useful for administrators who want to "ping" # the server, without adding test users, or creating fake # accounting packets. # # It's also useful when a NAS marks a RADIUS server "dead". # The NAS can periodically "ping" the server with a Status-Server # packet. If the server responds, it must be alive, and the # NAS can start using it for real requests. # # See also raddb/sites-available/status # status_server = yes } # PROXY CONFIGURATION # # proxy_requests: Turns proxying of RADIUS requests on or off. # # The server has proxying turned on by default. If your system is NOT # set up to proxy requests to another server, then you can turn proxying # off here. This will save a small amount of resources on the server. # # If you have proxying turned off, and your configuration files say # to proxy a request, then an error message will be logged. # # To disable proxying, change the "yes" to "no", and comment the # $INCLUDE line. # # allowed values: {no, yes} # proxy_requests = no #$INCLUDE proxy.conf # CLIENTS CONFIGURATION # # Client configuration is defined in "clients.conf". # # The 'clients.conf' file contains all of the information from the old # 'clients' and 'naslist' configuration files. We recommend that you # do NOT use 'client's or 'naslist', although they are still # supported. # # Anything listed in 'clients.conf' will take precedence over the # information from the old-style configuration files. # $INCLUDE clients.conf # THREAD POOL CONFIGURATION # # The thread pool is a long-lived group of threads which # take turns (round-robin) handling any incoming requests. # # You probably want to have a few spare threads around, # so that high-load situations can be handled immediately. If you # don't have any spare threads, then the request handling will # be delayed while a new thread is created, and added to the pool. # # You probably don't want too many spare threads around, # otherwise they'll be sitting there taking up resources, and # not doing anything productive. # # The numbers given below should be adequate for most situations. # thread pool { # Number of servers to start initially --- should be a reasonable # ballpark figure. start_servers = 5 # Limit on the total number of servers running. # # If this limit is ever reached, clients will be LOCKED OUT, so it # should NOT BE SET TOO LOW. It is intended mainly as a brake to # keep a runaway server from taking the system with it as it spirals # down... # # You may find that the server is regularly reaching the # 'max_servers' number of threads, and that increasing # 'max_servers' doesn't seem to make much difference. # # If this is the case, then the problem is MOST LIKELY that # your back-end databases are taking too long to respond, and # are preventing the server from responding in a timely manner. # # The solution is NOT do keep increasing the 'max_servers' # value, but instead to fix the underlying cause of the # problem: slow database, or 'hostname_lookups=yes'. # # For more information, see 'max_request_time', above. # max_servers = 32 # Server-pool size regulation. Rather than making you guess # how many servers you need, FreeRADIUS dynamically adapts to # the load it sees, that is, it tries to maintain enough # servers to handle the current load, plus a few spare # servers to handle transient load spikes. # # It does this by periodically checking how many servers are # waiting for a request. If there are fewer than # min_spare_servers, it creates a new spare. If there are # more than max_spare_servers, some of the spares die off. # The default values are probably OK for most sites. # min_spare_servers = 3 max_spare_servers = 10 # When the server receives a packet, it places it onto an # internal queue, where the worker threads (configured above) # pick it up for processing. The maximum size of that queue # is given here. # # When the queue is full, any new packets will be silently # discarded. # # The most common cause of the queue being full is that the # server is dependent on a slow database, and it has received # a large "spike" of traffic. When that happens, there is # very little you can do other than make sure the server # receives less traffic, or make sure that the database can # handle the load. # # max_queue_size = 65536 # Clean up old threads periodically. For no reason other than # it might be useful. # # '0' is a special value meaning 'infinity', or 'the servers never # exit' max_requests_per_server = 0 # Automatically limit the number of accounting requests. # This configuration item tracks how many requests per second # the server can handle. It does this by tracking the # packets/s received by the server for processing, and # comparing that to the packets/s handled by the child # threads. # # If the received PPS is larger than the processed PPS, *and* # the queue is more than half full, then new accounting # requests are probabilistically discarded. This lowers the # number of packets that the server needs to process. Over # time, the server will "catch up" with the traffic. # # Throwing away accounting packets is usually safe and low # impact. The NAS will retransmit them in a few seconds, or # even a few minutes. Vendors should read RFC 5080 Section 2.2.1 # to see how accounting packets should be retransmitted. Using # any other method is likely to cause network meltdowns. # auto_limit_acct = no } ###################################################################### # # SNMP notifications. Uncomment the following line to enable # snmptraps. Note that you MUST also configure the full path # to the "snmptrap" command in the "trigger.conf" file. # #$INCLUDE trigger.conf # MODULE CONFIGURATION # # The names and configuration of each module is located in this section. # # After the modules are defined here, they may be referred to by name, # in other sections of this configuration file. # modules { # # Each module has a configuration as follows: # # name [ instance ] { # config_item = value # ... # } # # The 'name' is used to load the 'rlm_name' library # which implements the functionality of the module. # # The 'instance' is optional. To have two different instances # of a module, it first must be referred to by 'name'. # The different copies of the module are then created by # inventing two 'instance' names, e.g. 'instance1' and 'instance2' # # The instance names can then be used in later configuration # INSTEAD of the original 'name'. See the 'radutmp' configuration # for an example. # # # As of 3.0, modules are in mods-enabled/. Files matching # the regex /[a-zA-Z0-9_.]+/ are loaded. The modules are # initialized ONLY if they are referenced in a processing # section, such as authorize, authenticate, accounting, # pre/post-proxy, etc. # #$INCLUDE mods-enabled/ pap { } chap { } mschap { } digest { } attr_filter attr_filter.access_reject { key = "%{User-Name}" filename = ${confdir}/access_reject } files { usersfile = ${confdir}/users } attr_filter attr_filter.accounting_response { key = "%{User-Name}" filename = ${confdir}/accounting_response } attr_filter attr_filter.access_challenge { key = "%{User-Name}" filename = ${confdir}/access_challenge } expr { safe_characters = "@abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789.-_: /äéöüàâæçèéêëîïôœùûüaÿÄÉÖÜßÀÂÆÇÈÉÊËÎÏÔŒÙÛÜŸ" } } # Instantiation # # This section orders the loading of the modules. Modules # listed here will get loaded BEFORE the later sections like # authorize, authenticate, etc. get examined. # # This section is not strictly needed. When a section like # authorize refers to a module, it's automatically loaded and # initialized. However, some modules may not be listed in any # of the following sections, so they can be listed here. # # Also, listing modules here ensures that you have control over # the order in which they are initialized. If one module needs # something defined by another module, you can list them in order # here, and ensure that the configuration will be OK. # # After the modules listed here have been loaded, all of the modules # in the "mods-enabled" directory will be loaded. Loading the # "mods-enabled" directory means that unlike Version 2, you usually # don't need to list modules here. # instantiate { # # We list the counter module here so that it registers # the check_name attribute before any module which sets # it # daily # subsections here can be thought of as "virtual" modules. # # e.g. If you have two redundant SQL servers, and you want to # use them in the authorize and accounting sections, you could # place a "redundant" block in each section, containing the # exact same text. Or, you could uncomment the following # lines, and list "redundant_sql" in the authorize and # accounting sections. # # The "virtual" module defined here can also be used with # dynamic expansions, under a few conditions: # # * The section is "redundant", or "load-balance", or # "redundant-load-balance" # * The section contains modules ONLY, and no sub-sections # * all modules in the section are using the same rlm_ # driver, e.g. They are all sql, or all ldap, etc. # # When those conditions are satisfied, the server will # automatically register a dynamic expansion, using the # name of the "virtual" module. In the example below, # it will be "redundant_sql". You can then use this expansion # just like any other: # # update reply { # Filter-Id := "%{redundant_sql: ... }" # } # # In this example, the expansion is done via module "sql1", # and if that expansion fails, using module "sql2". # # For best results, configure the "pool" subsection of the # module so that "retry_delay" is non-zero. That will allow # the redundant block to quickly ignore all "down" SQL # databases. If instead we have "retry_delay = 0", then # every time the redundant block is used, the server will try # to open a connection to every "down" database, causing # problems. # #redundant redundant_sql { # sql1 # sql2 #} } ###################################################################### # # Policies are virtual modules, similar to those defined in the # "instantiate" section above. # # Defining a policy in one of the policy.d files means that it can be # referenced in multiple places as a *name*, rather than as a series of # conditions to match, and actions to take. # # Policies are something like subroutines in a normal language, but # they cannot be called recursively. They MUST be defined in order. # If policy A calls policy B, then B MUST be defined before A. # ###################################################################### policy { # $INCLUDE policy.d/ } ###################################################################### # # Load virtual servers. # # This next $INCLUDE line loads files in the directory that # match the regular expression: /[a-zA-Z0-9_.]+/ # # It allows you to define new virtual servers simply by placing # a file into the raddb/sites-enabled/ directory. # server default { # # If you want the server to listen on additional addresses, or on # additional ports, you can use multiple "listen" sections. # # Each section make the server listen for only one type of packet, # therefore authentication and accounting have to be configured in # different sections. # # The server ignore all "listen" section if you are using '-i' and '-p' # on the command line. # listen { # Type of packets to listen for. # Allowed values are: # auth listen for authentication packets # acct listen for accounting packets # proxy IP to use for sending proxied packets # detail Read from the detail file. For examples, see # raddb/sites-available/copy-acct-to-home-server # status listen for Status-Server packets. For examples, # see raddb/sites-available/status # coa listen for CoA-Request and Disconnect-Request # packets. For examples, see the file # raddb/sites-available/coa # type = auth # Note: "type = proxy" lets you control the source IP used for # proxying packets, with some limitations: # # * A proxy listener CANNOT be used in a virtual server section. # * You should probably set "port = 0". # * Any "clients" configuration will be ignored. # # See also proxy.conf, and the "src_ipaddr" configuration entry # in the sample "home_server" section. When you specify the # source IP address for packets sent to a home server, the # proxy listeners are automatically created. # ipaddr/ipv4addr/ipv6addr - IP address on which to listen. # If multiple ones are listed, only the first one will # be used, and the others will be ignored. # # The configuration options accept the following syntax: # # ipv4addr - IPv4 address (e.g.192.0.2.3) # - wildcard (i.e. *) # - hostname (radius.example.com) # Only the A record for the host name is used. # If there is no A record, an error is returned, # and the server fails to start. # # ipv6addr - IPv6 address (e.g. 2001:db8::1) # - wildcard (i.e. *) # - hostname (radius.example.com) # Only the AAAA record for the host name is used. # If there is no AAAA record, an error is returned, # and the server fails to start. # # ipaddr - IPv4 address as above # - IPv6 address as above # - wildcard (i.e. *), which means IPv4 wildcard. # - hostname # If there is only one A or AAAA record returned # for the host name, it is used. # If multiple A or AAAA records are returned # for the host name, only the first one is used. # If both A and AAAA records are returned # for the host name, only the A record is used. # # ipv4addr = * # ipv6addr = * ipaddr = * # Port on which to listen. # Allowed values are: # integer port number (1812) # 0 means "use /etc/services for the proper port" port = 0 # Some systems support binding to an interface, in addition # to the IP address. This feature isn't strictly necessary, # but for sites with many IP addresses on one interface, # it's useful to say "listen on all addresses for eth0". # # If your system does not support this feature, you will # get an error if you try to use it. # # interface = eth0 # Per-socket lists of clients. This is a very useful feature. # # The name here is a reference to a section elsewhere in # radiusd.conf, or clients.conf. Having the name as # a reference allows multiple sockets to use the same # set of clients. # # If this configuration is used, then the global list of clients # is IGNORED for this "listen" section. Take care configuring # this feature, to ensure you don't accidentally disable a # client you need. # # See clients.conf for the configuration of "per_socket_clients". # # clients = per_socket_clients # # Connection limiting for sockets with "proto = tcp". # # This section is ignored for other kinds of sockets. # limit { # # Limit the number of simultaneous TCP connections to the socket # # The default is 16. # Setting this to 0 means "no limit" max_connections = 16 # The per-socket "max_requests" option does not exist. # # The lifetime, in seconds, of a TCP connection. After # this lifetime, the connection will be closed. # # Setting this to 0 means "forever". lifetime = 0 # # The idle timeout, in seconds, of a TCP connection. # If no packets have been received over the connection for # this time, the connection will be closed. # # Setting this to 0 means "no timeout". # # We STRONGLY RECOMMEND that you set an idle timeout. # idle_timeout = 30 } } # # This second "listen" section is for listening on the accounting # port, too. # listen { ipaddr = * # ipv6addr = :: port = 0 type = acct # interface = eth0 # clients = per_socket_clients limit { # The number of packets received can be rate limited via the # "max_pps" configuration item. When it is set, the server # tracks the total number of packets received in the previous # second. If the count is greater than "max_pps", then the # new packet is silently discarded. This helps the server # deal with overload situations. # # The packets/s counter is tracked in a sliding window. This # means that the pps calculation is done for the second # before the current packet was received. NOT for the current # wall-clock second, and NOT for the previous wall-clock second. # # Useful values are 0 (no limit), or 100 to 10000. # Values lower than 100 will likely cause the server to ignore # normal traffic. Few systems are capable of handling more than # 10K packets/s. # # It is most useful for accounting systems. Set it to 50% # more than the normal accounting load, and you can be sure that # the server will never get overloaded # # max_pps = 0 # Only for "proto = tcp". These are ignored for "udp" sockets. # # idle_timeout = 0 # lifetime = 0 # max_connections = 0 } } # IPv6 versions of the above - read their full config to understand options listen { type = auth ipv6addr = :: # any. ::1 == localhost port = 0 # interface = eth0 # clients = per_socket_clients limit { max_connections = 16 lifetime = 0 idle_timeout = 30 } } listen { ipv6addr = :: port = 0 type = acct # interface = eth0 # clients = per_socket_clients limit { # max_pps = 0 # idle_timeout = 0 # lifetime = 0 # max_connections = 0 } } # Authorization. First preprocess (hints and huntgroups files), # then realms, and finally look in the "users" file. # # Any changes made here should also be made to the "inner-tunnel" # virtual server. # # The order of the realm modules will determine the order that # we try to find a matching realm. # # Make *sure* that 'preprocess' comes before any realm if you # need to setup hints for the remote radius server authorize { # # Take a User-Name, and perform some checks on it, for spaces and other # invalid characters. If the User-Name appears invalid, reject the # request. # # See policy.d/filter for the definition of the filter_username policy. # #filter_username # # Some broken equipment sends passwords with embedded zeros. # i.e. the debug output will show # # User-Password = "password\000\000" # # This policy will fix it to just be "password". # # filter_password # # The preprocess module takes care of sanitizing some bizarre # attributes in the request, and turning them into attributes # which are more standard. # # It takes care of processing the 'raddb/mods-config/preprocess/hints' # and the 'raddb/mods-config/preprocess/huntgroups' files. #preprocess # If you intend to use CUI and you require that the Operator-Name # be set for CUI generation and you want to generate CUI also # for your local clients then uncomment the operator-name # below and set the operator-name for your clients in clients.conf # operator-name # # If you want to generate CUI for some clients that do not # send proper CUI requests, then uncomment the # cui below and set "add_cui = yes" for these clients in clients.conf # cui # # If you want to have a log of authentication requests, # un-comment the following line. # auth_log # # The chap module will set 'Auth-Type := CHAP' if we are # handling a CHAP request and Auth-Type has not already been set chap # # If the users are logging in with an MS-CHAP-Challenge # attribute for authentication, the mschap module will find # the MS-CHAP-Challenge attribute, and add 'Auth-Type := MS-CHAP' # to the request, which will cause the server to then use # the mschap module for authentication. mschap # # If you have a Cisco SIP server authenticating against # FreeRADIUS, uncomment the following line, and the 'digest' # line in the 'authenticate' section. digest # # The WiMAX specification says that the Calling-Station-Id # is 6 octets of the MAC. This definition conflicts with # RFC 3580, and all common RADIUS practices. Un-commenting # the "wimax" module here means that it will fix the # Calling-Station-Id attribute to the normal format as # specified in RFC 3580 Section 3.21 # wimax # # Look for IPASS style 'realm/', and if not found, look for # '@realm', and decide whether or not to proxy, based on # that. # IPASS # # If you are using multiple kinds of realms, you probably # want to set "ignore_null = yes" for all of them. # Otherwise, when the first style of realm doesn't match, # the other styles won't be checked. # #suffix # ntdomain # # This module takes care of EAP-MD5, EAP-TLS, and EAP-LEAP # authentication. # # It also sets the EAP-Type attribute in the request # attribute list to the EAP type from the packet. # # The EAP module returns "ok" or "updated" if it is not yet ready # to authenticate the user. The configuration below checks for # "ok", and stops processing the "authorize" section if so. # # Any LDAP and/or SQL servers will not be queried for the # initial set of packets that go back and forth to set up # TTLS or PEAP. # # The "updated" check is commented out for compatibility with # previous versions of this configuration, but you may wish to # uncomment it as well; this will further reduce the number of # LDAP and/or SQL queries for TTLS or PEAP. # # # Pull crypt'd passwords from /etc/passwd or /etc/shadow, # using the system API's to get the password. If you want # to read /etc/passwd or /etc/shadow directly, see the # mods-available/passwd module. # # unix # # Read the 'users' file. In v3, this is located in # raddb/mods-config/files/authorize files # # Look in an SQL database. The schema of the database # is meant to mirror the "users" file. # # See "Authorization Queries" in mods-available/sql -sql # # If you are using /etc/smbpasswd, and are also doing # mschap authentication, the un-comment this line, and # configure the 'smbpasswd' module. # smbpasswd # # The ldap module reads passwords from the LDAP database. -ldap # # Enforce daily limits on time spent logged in. # daily # #expiration #logintime # # Multifactor authentication used if User-Name format test[0123456789]*-otp # and attribute &control:Tmp-Integer-0 (number of challenges) have a non zero value if (User-Name =~ /^test[0123456789]*-otp$/m && (!&State || &control:Tmp-Integer-0 > "%{expr: %{string:State}}") && &control:Tmp-Integer-0 > 0) { update control { &Auth-Type := "OTP" } } # # If no other module has claimed responsibility for # authentication, then try to use PAP. This allows the # other modules listed above to add a "known good" password # to the request, and to do nothing else. The PAP module # will then see that password, and use it to do PAP # authentication. # # This module should be listed last, so that the other modules # get a chance to set Auth-Type for themselves. # pap # # If "status_server = yes", then Status-Server messages are passed # through the following section, and ONLY the following section. # This permits you to do DB queries, for example. If the modules # listed here return "fail", then NO response is sent. # # Autz-Type Status-Server { # # } } # Authentication. # # # This section lists which modules are available for authentication. # Note that it does NOT mean 'try each module in order'. It means # that a module from the 'authorize' section adds a configuration # attribute 'Auth-Type := FOO'. That authentication type is then # used to pick the appropriate module from the list below. # # In general, you SHOULD NOT set the Auth-Type attribute. The server # will figure it out on its own, and will do the right thing. The # most common side effect of erroneously setting the Auth-Type # attribute is that one authentication method will work, but the # others will not. # # The common reasons to set the Auth-Type attribute by hand # is to either forcibly reject the user (Auth-Type := Reject), # or to or forcibly accept the user (Auth-Type := Accept). # # Note that Auth-Type := Accept will NOT work with EAP. # # Please do not put "unlang" configurations into the "authenticate" # section. Put them in the "post-auth" section instead. That's what # the post-auth section is for. # authenticate { # # Challenge PAP authentication, when a back-end database listed # in the 'authorize' section supplies a password and Auth-Type=OTP. The # password can be clear-text, or encrypted. Initial State value is 1. # Number of challenges is a value of &control:Tmp-Octets-0. Default is 0 - # module skipped. Auth-Type OTP { pap { ok = 1 reject = 1 } if (ok) { update reply { &State := "%{expr: %{%{string:State}:-0} + 1}" &Reply-Message = "Please enter challenge password %{string:reply:State}." } } elsif (reject) { if (&State && User-Name == "test3-otp") { update reply { &State := "%{string:State}" &Reply-Message = "Please enter challenge password %{string:reply:State}." } } } update control { &Response-Packet-Type = Access-Challenge } } # # PAP authentication, when a back-end database listed # in the 'authorize' section supplies a password. The # password can be clear-text, or encrypted. Auth-Type PAP { pap } # # Most people want CHAP authentication # A back-end database listed in the 'authorize' section # MUST supply a CLEAR TEXT password. Encrypted passwords # won't work. Auth-Type CHAP { chap } # # MSCHAP authentication. Auth-Type MS-CHAP { mschap } # # For old names, too. # mschap # # If you have a Cisco SIP server authenticating against # FreeRADIUS, uncomment the following line, and the 'digest' # line in the 'authorize' section. digest # # Pluggable Authentication Modules. # pam # Uncomment it if you want to use ldap for authentication # # Note that this means "check plain-text password against # the ldap database", which means that EAP won't work, # as it does not supply a plain-text password. # # We do NOT recommend using this. LDAP servers are databases. # They are NOT authentication servers. FreeRADIUS is an # authentication server, and knows what to do with authentication. # LDAP servers do not. # # Auth-Type LDAP { # ldap # } # # Allow EAP authentication. #eap # # The older configurations sent a number of attributes in # Access-Challenge packets, which wasn't strictly correct. # If you want to filter out these attributes, uncomment # the following lines. # # Auth-Type eap { # eap { # handled = 1 # } # if (handled && (Response-Packet-Type == Access-Challenge)) { # attr_filter.access_challenge.post-auth # handled # override the "updated" code from attr_filter # } # } } # # Pre-accounting. Decide which accounting type to use. # preacct { #preprocess # # Merge Acct-[Input|Output]-Gigawords and Acct-[Input-Output]-Octets # into a single 64bit counter Acct-[Input|Output]-Octets64. # # acct_counters64 # # Session start times are *implied* in RADIUS. # The NAS never sends a "start time". Instead, it sends # a start packet, *possibly* with an Acct-Delay-Time. # The server is supposed to conclude that the start time # was "Acct-Delay-Time" seconds in the past. # # The code below creates an explicit start time, which can # then be used in other modules. It will be *mostly* correct. # Any errors are due to the 1-second resolution of RADIUS, # and the possibility that the time on the NAS may be off. # # The start time is: NOW - delay - session_length # # update request { # &FreeRADIUS-Acct-Session-Start-Time = "%{expr: %l - %{%{Acct-Session-Time}:-0} - %{%{Acct-Delay-Time}:-0}}" # } # # Ensure that we have a semi-unique identifier for every # request, and many NAS boxes are broken. #acct_unique # # Look for IPASS-style 'realm/', and if not found, look for # '@realm', and decide whether or not to proxy, based on # that. # # Accounting requests are generally proxied to the same # home server as authentication requests. # IPASS #suffix # ntdomain # # Read the 'acct_users' file files } # # Accounting. Log the accounting data. # accounting { # Update accounting packet by adding the CUI attribute # recorded from the corresponding Access-Accept # use it only if your NAS boxes do not support CUI themselves # cui # # Create a 'detail'ed log of the packets. # Note that accounting requests which are proxied # are also logged in the detail file. #detail # daily # Update the wtmp file # # If you don't use "radlast", you can delete this line. #unix # # For Simultaneous-Use tracking. # # Due to packet losses in the network, the data here # may be incorrect. There is little we can do about it. # radutmp # sradutmp # Return an address to the IP Pool when we see a stop record. # main_pool # # Log traffic to an SQL database. # # See "Accounting queries" in mods-available/sql -sql # # If you receive stop packets with zero session length, # they will NOT be logged in the database. The SQL module # will print a message (only in debugging mode), and will # return "noop". # # You can ignore these packets by uncommenting the following # three lines. Otherwise, the server will not respond to the # accounting request, and the NAS will retransmit. # # if (noop) { # ok # } # Cisco VoIP specific bulk accounting # pgsql-voip # For Exec-Program and Exec-Program-Wait #exec # Filter attributes from the accounting response. attr_filter.accounting_response # # See "Autz-Type Status-Server" for how this works. # # Acct-Type Status-Server { # # } } # Session database, used for checking Simultaneous-Use. Either the radutmp # or rlm_sql module can handle this. # The rlm_sql module is *much* faster session { # radutmp # # See "Simultaneous Use Checking Queries" in mods-available/sql # sql } # Post-Authentication # Once we KNOW that the user has been authenticated, there are # additional steps we can take. post-auth { # # If you need to have a State attribute, you can # add it here. e.g. for later CoA-Request with # State, and Service-Type = Authorize-Only. # # if (!&reply:State) { # update reply { # State := "0x%{randstr:16h}" # } # } # # For EAP-TTLS and PEAP, add the cached attributes to the reply. # The "session-state" attributes are automatically cached when # an Access-Challenge is sent, and automatically retrieved # when an Access-Request is received. # # The session-state attributes are automatically deleted after # an Access-Reject or Access-Accept is sent. # update { &reply: += &session-state: } # Get an address from the IP Pool. # main_pool # Create the CUI value and add the attribute to Access-Accept. # Uncomment the line below if *returning* the CUI. # cui # # If you want to have a log of authentication replies, # un-comment the following line, and enable the # 'detail reply_log' module. # reply_log # # After authenticating the user, do another SQL query. # # See "Authentication Logging Queries" in mods-available/sql -sql # # Un-comment the following if you want to modify the user's object # in LDAP after a successful login. # # ldap # For Exec-Program and Exec-Program-Wait #exec # # Calculate the various WiMAX keys. In order for this to work, # you will need to define the WiMAX NAI, usually via # # update request { # WiMAX-MN-NAI = "%{User-Name}" # } # # If you want various keys to be calculated, you will need to # update the reply with "template" values. The module will see # this, and replace the template values with the correct ones # taken from the cryptographic calculations. e.g. # # update reply { # WiMAX-FA-RK-Key = 0x00 # WiMAX-MSK = "%{EAP-MSK}" # } # # You may want to delete the MS-MPPE-*-Keys from the reply, # as some WiMAX clients behave badly when those attributes # are included. See "raddb/modules/wimax", configuration # entry "delete_mppe_keys" for more information. # # wimax # If there is a client certificate (EAP-TLS, sometimes PEAP # and TTLS), then some attributes are filled out after the # certificate verification has been performed. These fields # MAY be available during the authentication, or they may be # available only in the "post-auth" section. # # The first set of attributes contains information about the # issuing certificate which is being used. The second # contains information about the client certificate (if # available). # # update reply { # Reply-Message += "%{TLS-Cert-Serial}" # Reply-Message += "%{TLS-Cert-Expiration}" # Reply-Message += "%{TLS-Cert-Subject}" # Reply-Message += "%{TLS-Cert-Issuer}" # Reply-Message += "%{TLS-Cert-Common-Name}" # Reply-Message += "%{TLS-Cert-Subject-Alt-Name-Email}" # # Reply-Message += "%{TLS-Client-Cert-Serial}" # Reply-Message += "%{TLS-Client-Cert-Expiration}" # Reply-Message += "%{TLS-Client-Cert-Subject}" # Reply-Message += "%{TLS-Client-Cert-Issuer}" # Reply-Message += "%{TLS-Client-Cert-Common-Name}" # Reply-Message += "%{TLS-Client-Cert-Subject-Alt-Name-Email}" # } # Insert class attribute (with unique value) into response, # aids matching auth and acct records, and protects against duplicate # Acct-Session-Id. Note: Only works if the NAS has implemented # RFC 2865 behaviour for the class attribute, AND if the NAS # supports long Class attributes. Many older or cheap NASes # only support 16-octet Class attributes. # insert_acct_class # MacSEC requires the use of EAP-Key-Name. However, we don't # want to send it for all EAP sessions. Therefore, the EAP # modules put required data into the EAP-Session-Id attribute. # This attribute is never put into a request or reply packet. # # Uncomment the next few lines to copy the required data into # the EAP-Key-Name attribute # if (&reply:EAP-Session-Id) { # update reply { # EAP-Key-Name := &reply:EAP-Session-Id # } # } # Remove reply message if the response contains an EAP-Message #remove_reply_message_if_eap # # Access-Reject packets are sent through the REJECT sub-section of the # post-auth section. # # Add the ldap module name (or instance) if you have set # 'edir_account_policy_check = yes' in the ldap module configuration # # The "session-state" attributes are not available here. Post-Auth-Type REJECT { # log failed authentications in SQL, too. attr_filter.access_reject } # # # Filter access challenges. # Post-Auth-Type Challenge { # remove_reply_message_if_eap attr_filter.access_challenge } } # # When the server decides to proxy a request to a home server, # the proxied request is first passed through the pre-proxy # stage. This stage can re-write the request, or decide to # cancel the proxy. # # Only a few modules currently have this method. # pre-proxy { # Before proxing the request add an Operator-Name attribute identifying # if the operator-name is found for this client. # No need to uncomment this if you have already enabled this in # the authorize section. # operator-name # The client requests the CUI by sending a CUI attribute # containing one zero byte. # Uncomment the line below if *requesting* the CUI. # cui # Uncomment the following line if you want to change attributes # as defined in the preproxy_users file. # files # Uncomment the following line if you want to filter requests # sent to remote servers based on the rules defined in the # 'attrs.pre-proxy' file. # attr_filter.pre-proxy # If you want to have a log of packets proxied to a home # server, un-comment the following line, and the # 'detail pre_proxy_log' section, above. # pre_proxy_log } # # When the server receives a reply to a request it proxied # to a home server, the request may be massaged here, in the # post-proxy stage. # post-proxy { # If you want to have a log of replies from a home server, # un-comment the following line, and the 'detail post_proxy_log' # section, above. # post_proxy_log # Uncomment the following line if you want to filter replies from # remote proxies based on the rules defined in the 'attrs' file. # attr_filter.post-proxy # # If you are proxying LEAP, you MUST configure the EAP # module, and you MUST list it here, in the post-proxy # stage. # # You MUST also use the 'nostrip' option in the 'realm' # configuration. Otherwise, the User-Name attribute # in the proxied request will not match the user name # hidden inside of the EAP packet, and the end server will # reject the EAP request. # eap # # If the server tries to proxy a request and fails, then the # request is processed through the modules in this section. # # The main use of this section is to permit robust proxying # of accounting packets. The server can be configured to # proxy accounting packets as part of normal processing. # Then, if the home server goes down, accounting packets can # be logged to a local "detail" file, for processing with # radrelay. When the home server comes back up, radrelay # will read the detail file, and send the packets to the # home server. # # With this configuration, the server always responds to # Accounting-Requests from the NAS, but only writes # accounting packets to disk if the home server is down. # # Post-Proxy-Type Fail-Accounting { # detail # } } }